Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Chin Med Assoc ; 85(11): 1038-1043, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2107630

ABSTRACT

In mid-2022, the COVID-19 cases have reached close to 562 million, but its overall infection rate is hard to confirm. Even with effective vaccines, break-through infections with new variants occur, and safe and reliable testing still plays a critical role in isolation of infected individuals and in control of an outbreak of a COVID-19 pandemic. In response to this urgent need, the diagnostic tests for COVID-19 are rapidly evolving and improving these days. The health authorities of many countries issued requirements for detecting SARS-CoV-2 diagnosis tests during the pandemic and have timely access to these tests to ensure safety and effectiveness. In this study, we compared the requirements of EUA in Taiwan, Singapore, and the United States. For the performance evaluations of nucleic acid extraction, inclusivity, limit of detection (LoD), cross-reactivity, interference, cutoff, and stability, the requirements are similar in the three countries. The use of natural clinical specimens is needed for clinical evaluation in Taiwan and the United States. However, carry-over and cross-contamination studies can be exempted in Taiwan and the United States but are required in Singapore. This review outlines requirements and insight to guide the test developers on the development of IVDs. Considering the rapidly evolving viruses and severe pandemic of COVID-19, timely and accurate diagnostic testing is imperative to the management of diseases. As noted above, the performance requirements for SARS-CoV-2 nucleic acid tests are similar between Taiwan, Singapore and the United States. The differences are mainly in two points: the recommended microorganisms for cross-reactivity study, and the specimen requirement for clinical evaluation. This study provides an overview of current requirements of SARS-CoV-2 nucleic acid tests in Taiwan, Singapore, and the United States.


Subject(s)
COVID-19 , Nucleic Acids , United States , Humans , COVID-19/diagnosis , Pandemics , SARS-CoV-2 , COVID-19 Testing , Public Health , Taiwan/epidemiology , Singapore/epidemiology
2.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1974874

ABSTRACT

Since December 2019, the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected ~435 million people and caused ~6 million related deaths as of March 2022. To combat COVID-19, there have been many attempts to repurpose FDA-approved drugs or revive old drugs. However, many of the current treatment options have been known to cause adverse drug reactions. We employed a population-based drug screening platform using 13 human leukocyte antigen (HLA) homozygous human induced pluripotent cell (iPSC) lines to assess the cardiotoxicity and neurotoxicity of the first line of anti-COVID-19 drugs. We also infected iPSC-derived cells to understand the viral infection of cardiomyocytes and neurons. We found that iPSC-derived cardiomyocytes express the ACE2 receptor which correlated with a higher infection of the SARS-CoV-2 virus (r = 0.86). However, we were unable to detect ACE2 expression in neurons which correlated with a low infection rate. We then assessed the toxicity of anti-COVID-19 drugs and identified two cardiotoxic compounds (remdesivir and arbidol) and four neurotoxic compounds (arbidol, remdesivir, hydroxychloroquine, and chloroquine). These data show that this platform can quickly and easily be employed to further our understanding of cell-specific infection and identify drug toxicity of potential treatment options helping clinicians better decide on treatment options.

SELECTION OF CITATIONS
SEARCH DETAIL